Solutions

AP Physics 1 - Test 07 - Work and Energy

Score:

Which of the following is NOT a correct unit for work?

ft.lb Valid

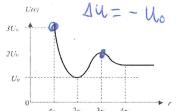
watt

newton meter Valid

a Force multiplied

by a distance.

joule Valid


2. The graph represents the potential energy U as a function of position r for a particle of mass m. If the particle is released from rest at position ro, what will its speed be at position 3r_o?

Hint: This is NOT a Force v. Displacement Graph, so don't take the area!. To find the gain in kinetic energy, simply look for the loss in potential energy from r₀ to 3r₀. It has lost U₀ amount of potential energy, so it has gained U₀ amount of kinetic energy.

- sqrt(8U₀/m)
- sqrt(4U₀/m)

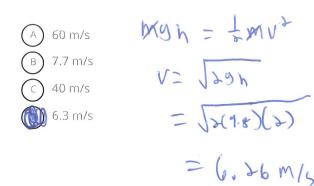
sqrt(2U₀/m)

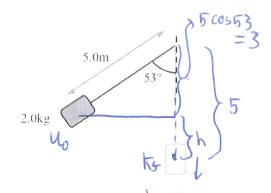
sqrt(6U₀/m)

3. The potential energy function U(x) is associated with a force F and described by the graph given here. If a particle being acted upon by this force has a kinetic energy of 1 J at position x what is the particle's kinetic energy at position x_{α} ?

HINT: Just like the last problem, this is NOT a Force v. Displacement graph. So just remember that the loss in potential energy is the gain in kinetic energy. So how much energy did potential energy lose? Consider that the object has an initial kinetic energy.

- 6.01
- 7.0 J


2.01


released. The speed of the mass at the bottom of its swing is.

-2.01

Sains the same amount of energy that Autential 4. A mass of 2 kg is attached to the end of a light string to make a pendulum 5.0 m in length. The mass is raised to an angle of 53° relative to the vertical, as shown, and

HINT: Use some trigonometry to find out how much the height (and thus the gravitational potential energy) has changed. This will be how much kinetic energy has been gained and the answer can be calculated.

5. A boy <u>holds</u> a 40-N weight at arm's length for 10 s. His arm is 1.5m above the ground. The work done by the force of the boy on the weight while he is holding it is:

no displacement it it is stationary

$$W = F \Delta \chi = (40)(0) = 0$$

6. A block of wood, initially moving along a rough surface, is pushed with an applied horizontal force F that is less than the friction force F The forces are in opposite directions. Which of the following statements is following.

Friction - negative

Applied > positive

The net work being done on the box decreases its kinetic energy.

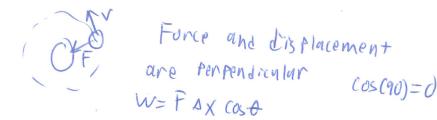
7. A crate moves 10m to the right on a horizontal surface as a woman pulls on it with a 10-N force. Rank the situations shown below according to the work done by her force, least to greatest

3, 2, 1

The work done by gravity during the descent of a projectile:

is positive

If force and distincement are is the Same direction, work is positive.


is negative

is zero

9. A moon of mass m orbits a planet of mass M in a perfectly circular orbit of radius r, with a force of gravitational attraction between the two bodies of F.. How much Work is done on the moon by the planet during a single orbit of the noon?

10. A bucket of water with a total weight of 50 Newtons is lifted at constant velocity up a 10 meter deep well. If it takes 20 seconds to raise the bucket this distance, the Power required to lift the bucket is

A 25 J

(c) 2.5 J

D 500 W

11. A 2-kg object is moving at 3m/s. A 4-N force is applied in the direction of motion and then removed after the object has traveled an additional 5m. The work done by this force is:

(A) 12 J

(B) 15 J

(c) 18 J

(() 20 J

(E) 38J

W= FAX coso = (4)(5)=10J

12. Camping equipment weighing 6000N is pulled across a frozen lake by means of a horizontal rope. The coefficient of kinetic friction is 0.05. The work done by the campers in pulling the equipment 1000m at constant velocity is:

 $(A) 3.1 \times 10^4$

For = MFn = (005)(6000) = 300 N

W= F(AX) = (300)(1000) = 300,000)

(B) 1.5×10^5 J

(ii) 3.0 × 10⁵ J

 $0.2.9 \times 10^{6}$ L

(E) 6.0 × 10⁶ J

13. A man pulls a 100-N crate up a frictionless 30° slope 5m high, as shown. Assuming that the crate moves at constant speed, the work done by the man is:

<u>HINT</u>: How long is the ramp? How much force is he pulling with? Is the block moving in the same direction as the force of his pull?

(A) -500 J

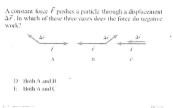
W = 1

 $= mg \Delta h = (100)(5)$

100 N 5 m

(C) (0

D 250 J


(500 J

14. If the force and displacement of an object are in opposite directions, the work done on that object by that force is

	negative	
(2)	zero	
15.	Which equation best represents the kinetic energy of an object? KE = mgh	
	$KE = 0.5 \text{mv}^2$ $KE = kx$ $KE = 0.5 \text{ kx}^2$	
ene mo	A child is on a playground swing, motionless at the highest point of his arc. What ergy transformation takes place as he swings back down to the lowest point of his tion? $K \text{ to } U_g$ $U_g \text{ to } K$ $E_{\text{thermal}} \text{ to } K$ $U_g \text{ to } E_{\text{thermal}}$ $K \text{ to } E_{\text{thermal}}$	
17. tra A B C	A skier is gliding down a gentle slope at a constant speed. What energy insformation is taking place? K to U_g Ug to K Ethermal to K Ug to Ethermal	
A C D	A crane lowers a girder into place at constant speed. Consider the work W_g done gravity and the work W_T done by the tension in the cable. Which is true? $W_g = \text{positive and } W_T = \text{positive}$ $W_g = \text{positive and } W_T = \text{negative}$ $W_g = \text{negative and } W_T = \text{positive}$ $W_g = \text{negative and } W_T = \text{negative}$ $W_g = \text{negative and } W_T = \text{negative}$ $W_g = \text{negative and } W_T = \text{negative}$ $W_g = 0 \text{ and } W_T = 0$	~
19.	Please click the image and answer the provided question.	

(A) positive

Which force below does the most work? All three displacements are the same.

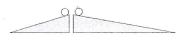
The 10 N force

W= FAX coso The 8 N force

The 6 N force

They all do the same work.

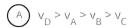
Ball A has half the mass and eight times the kinetic energy of ball B. What is the speed ratio v_A/v_B?


K= x8 } x 16 > x4

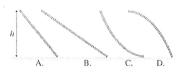
1/16

Starting from rest, a marble first rolls down a steeper hill, then down a less steep hill of the same height. For which is it going faster at the bottom?

Faster at the bottom of the steeper hill


Faster at the bottom of the less steep hill

Same speed at the bottom of both hills


Can't say without knowing the mass of the marble

23. A small child slides down the four frictionless slides A-D. Rank in order, from largest to smallest, her speeds at the bottom.

$$(C)$$
 $V_C > V_A > V_B > V_D$

$$\bigvee_{A} = V_{B} = V_{C} = V_{D}$$

24. A hockey puck sliding on smooth ice at 4 m/s comes to a 1-m-high hill. Will it make it to the top of the hill?

Yes

No

not enough energy

Can't answer without knowing the mass of the puck

(D)	Can't say withou	t knowing	the	angle	of the	hill

25.	A spring-loaded	gun shoots a	plastic ball v	with a launch	speed of	2.0 m/s. If the
sprin	ig is compressed	I twice as far,	the ball's lau	unch speed w	ill be	

(A)	1	.0	m/s	
1						

$$\frac{1}{7}\mu X_{\mu} = \frac{7}{1}\mu \Lambda_{\mu}$$

- 1.0 m/s
- 2.0 m/s
- 2.8 m/s
- 4.0 m/s
- 16.0 m/s

27. Four students run up the stairs in the time shown. Which student has the largest power output?

- Marine The War War War
- 28. Five toy cars accelerate from rest to their top speed in a certain amount of time. The masses of the cars, the final speeds, and the time to reach this speed are noted in the table. Which car has the greatest power?

- P= W = AK = Emvio

Car	Manigi	Specimen	Time (8)
A	104	1	12
13	200	1	2
(\$19.5	2	1
D	000	1	1
r	400	2	11

Which of the following bodies has the largest kinetic energy?

- Mass 3M and speed V
- Mass 3M and speed 2V
- K= =mv=
- Mass 2M and speed 3V
- Mass M and speed 4V

E	All four	of the	above	have	the	same	kinetic	energ
								0.

30. Two trailers, X with mass 500 kg and Y with mass 2000 kg, are being pulled at the same speed. The ratio of the kinetic energy of Y to that of X is:

(A) 1:1

- B) 2:1
- B 2:1
- D 9:1
- (E) 1500:1

K= = mvz

31. A 5.0-kg cart is moving horizontally at 6.0m/s. In order to change its speed to 10.0m/s, the net work done on the cart must be:

HINT: The net work done on a body is the change of its kinetic energy.

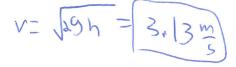
- (A) 40 J
- B 901
- 160 |
- D 400 J
- (E) 550 J
- - = 1605
- 32. A 5.0-kg cart is moving horizontally at 6.0m/s. In order to change its speed to 10.0m/s is a time interval of 5 seconds. What is the power output?
- (A) 8 W
- (B) 18 W
- (iii) 32 W
- D 80 W
- (E) 110 W

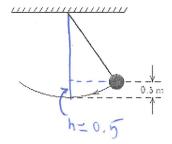
- $P = \frac{w}{t} = \frac{160}{5} = 31 \text{ W}$
- 33. On an analysis of the force vs compression of a spring. What aspect of the graph represents the spring constant?
- The slope
- B The area
- FSP= HAX
- T= LSP
- (c) The maximum force multiplied by the maximum compression
- The minimum force multiplied by the maximum compression
- 34. On an analysis of the force vs compression of a spring. What aspect of the graph $\,$ represents the work performed on the spring?
- A The slope
- The area

- W= FAX
- The maximum force multiplied by the maximum compression

_	
-	-
D)	
	D

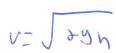
The minimum force multiplied by the maximum compression

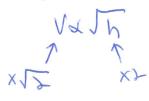

35. A crane raises a 50-N weight 3m above the floor for 30 seconds at constant velocity. The power required to do this is:


- (A) 150W
- (B) 50W
- $P = \frac{W}{t} = \frac{\widetilde{M} \circ \Delta h}{t} = \frac{(50)(3)}{30}$
- (c) 30W
- 5W
- (E) OW

36. A simple pendulum consists of a 2.0-kg mass attached to a string. It is released from rest at X as shown. Its speed at the lowest point Y is about:

- (A) 0.90 m/s
- (B) 1.90 m/s
- 3.1 m/s
- D 6.0 m/s
- (E) 36 m/s





37. You toss a pebble upward with a velocity v and it obtains a height H. How fast must you throw the pebble to obtain twice the height?

- (A) 2 V
- (B) 4 v
- sqrt(2)
- O V
- farz = ma HI

38. As a ball is thrown upwards, compare the signs of the work done by gravity while the ball goes up, and when the ball goes down.

- A <u>Up</u>: Positive <u>Down</u>: Positive
- <u>Up</u>: Negative <u>Down</u>: Positive
- C <u>Up</u>: Positive <u>Down</u>: Negative
- D <u>Up</u>: Negative <u>Down</u>: Negative

39. As a ball is thrown upwards, compare the signs of the work done by <u>drag</u> while the ball goes up, and when the ball goes down.

- A <u>Up</u>: Positive <u>Down</u>: Positive
- B <u>Up</u>: Negative <u>Down</u>: Positive
- C <u>Up</u>: Positive <u>Down</u>: Negative

40. Three balls are thrown from a cliff with the same speed but at different angles. Which ball has the greatest speed just before it hits the ground?

ΠA

ig(E ig) It is situation, depending on the masses of each ball.

0 0 0 0 0 A B C

All have same initial kinetic and potential.

energy, so the will end with same kinetic.